\qquad

C.U.SHAH UNIVERSITY
 Winter Examination-2015

Subject Name: Operations Research

Subject Code: 5SC01MTE1
Semester: 1 Date: 11/12/2015 Time: 10:30 To 01:30 Marks: 70

Instructions:

(1) Use of Programmable calculator and any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

SECTION - I

Q-1
 Attempt the Following questions.

a. Define: solution.
b. Define: Slack variable.
c. Which type of solution exist for given LPP

MaximizeZ $=3 x_{1}+4 x_{2}$
Subject to

$$
\begin{aligned}
& x_{1}-x_{2}=-1 \\
& -x_{1}+x_{2} \leq 0
\end{aligned}
$$

and

$$
x_{1}, x_{2} \geq 0
$$

d. For minimization problem, what is coefficient of an artificial variable in the objective function?
e. The right hand side of the constraint in simplex method must be non-negative. Determine whether statement is true or false?
f. If dual has an unbounded solution, then primal has no feasible solution.

Determine whether statement is true or false?
g. For maximization LP problem, the simplex method is terminated when all values $z_{j} \leq 0$. Determine whether statement is true or false?

Attempt all questions

OR

Attempt all questions

a. Use the simplex method to solve the following LP problem

Maximize $Z=2 x_{1}+5 x_{2}$
Subject to

$$
x_{1}+4 x_{2} \leq 24
$$

$$
3 x_{1}+x_{2} \leq 21
$$

$x_{1}+x_{2} \leq 9$
and $x_{1}, x_{2} \geq 0$.
b. What is Duality? What are the rules to form a dual problem from the primal problem? What are the advantages of Duality?
a. Use the Big-M method to solve the following LP problem

Minimize $Z=12 x_{1}+20 x_{2}$
Subject to

$$
\begin{aligned}
& 6 x_{1}+8 x_{2} \geq 100 \\
& 7 x_{1}+12 x_{2} \geq 120
\end{aligned}
$$

and $x_{1}, x_{2} \geq 0$.
b. Solve the following LP problem by graphical method

Maximize $Z=2 x_{1}+3 x_{2}$
Subject to

$$
\begin{gathered}
x_{1}+x_{2} \leq 30 \\
x_{2} \geq 3 \\
x_{2} \leq 12
\end{gathered}
$$

$$
\begin{gather*}
x_{1}-x_{2} \geq 0 \\
0 \leq x_{1} \leq 20 \\
\text { OR } \tag{07}
\end{gather*}
$$

Attempt all questions
a. Solve the following LP problem by graphical method

Minimize $Z=2 x_{1}+x_{2}$
Subject to
$x_{1}-3 x_{2} \leq 6$

$$
2 x_{1}+4 x_{2} \geq 8
$$

$x_{1}-3 x_{2} \geq-6$
and $x_{1}, x_{2} \geq 0$.
b. Use Two-Phase method to solve given LP problem

Minimize $Z=x_{1}+x_{2}$
Subject to

$$
2 x_{1}+x_{2} \geq 4
$$

$x_{1}+7 x_{2} \geq 7$
and $x_{1}, x_{2} \geq 0$.

SECTION - II

Attempt the Following questions

a. Write Kuhn-Tucker condition for maximization type non-linear program.
b. Determine, whether the function $f(x)=10-x^{2}$ convex or concave?
c. Define: Separable programming.
d. Write Hessian matrix.
e. What is unbalance assignment problem?
f. What is a necessary and sufficient condition for the existence of a feasible solution to the transportation problem?
g. If there were n workers and n jobs there would be n ! Solution. Determine, whether statement is true or false?

Attempt all questions
a. Determine the initial basic feasible solution to the following transportation problem by using Vogel's Approximation method.

Plant	Distribution Centre				Supply
	D_{1}	D_{2}	D_{3}	D_{4}	
P_{1}	1	3	1	4	30
P_{2}	3	3	2	1	50
P_{3}	4	2	5	9	20
Demand	20	40	30	10	100

b. A company has four machine to do three jobs. Each job can be assigned to one and only one machine. The cost of each job on each machine is given in the following table:

A
Job

Machine			
W	X	Y	Z
18	24	28	32
8	13	17	18
10	15	19	22

What are the job assignments which will minimize the cost?

OR

Q-5

Q-6

Attempt all questions

a. Find optimum solution by MODI method. If alternate solution exist then find.

	D_{1}	D_{2}	D_{3}	supply
S_{1}	4	8	8	76
S_{2}	16	24	16	82
S_{3}	8	16	24	77
Demand	72	102	41	

b. Use the dual simplex method to solve the LPP

Maximize $Z=-2 x_{1}-x_{3}$
Subject to

$$
\begin{aligned}
& x_{1}+x_{2}-x_{3} \geq 5 \\
& x_{1}-2 x_{2}+4 x_{3} \geq 8
\end{aligned}
$$

and $x_{1}, x_{2}, x_{3} \geq 0$.

Attempt all questions

a. Solve the following non-linear programming graphically

Minimize $Z=x_{1}^{2}+x_{2}^{2}$
Subject to
$x_{1}+x_{2} \geq 8$

$$
x_{1}+2 x_{2} \geq 10
$$

$2 x_{1}+x_{2} \geq 10$
and $\quad x_{1}, x_{2} \geq 0$
b. Solve the following non-linear programming problem by Lagrangian multiplier
method
Maximize $Z=4 x_{1}-x_{1}^{2}+8 x_{2}-x_{2}^{2}$
Subject to

$$
x_{1}+x_{2}=2
$$

and

$$
x_{1}, x_{2} \geq 0
$$

OR

Q-6

Attempt all Questions

a. Determine the relative maximum and minimum of the following function

$$
\begin{equation*}
f(X)=x_{1}+2 x_{3}+x_{2} x_{3}-x_{1}^{2}-x_{2}^{2}-x_{3}^{2} . \tag{07}
\end{equation*}
$$

b. Use the wolfe's method to solve the quadratic programming problem.

Maximize $Z=2 x_{1}+x_{2}-x_{1}^{2}$
Subject to

$$
\begin{aligned}
& 2 x_{1}+3 x_{2} \leq 6 \\
& 2 x_{1}+x_{2} \leq 4
\end{aligned}
$$

and

$$
x_{1}, x_{2} \geq 0 .
$$

